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ABSTRACT
The aim of the present paper is to examine a multivariate extension of the Spearman
dependence coefficient which can be deployed in the framework of regression analysis.
The coefficient describes how well a response random variable can be approximated
by a multivariate monotonously increasing function of a certain number of regressors.
We introduce estimators of the dependence coefficient and prove their convergence
rate and asymptotic normality.
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1. Introduction

In this paper we introduce a multivariate version of Spearman’s rho tailored for use
in regression analysis. This dependence coefficient is introduced as a straightforward
extension of the well-known Spearman coefficient of two random variables (cf. Nelsen
(2006), pp. 167). It is defined in a similar way to the Kendall regression coefficient
which was introduced in Liebscher (2021).

Let Y be the response variable in a regression setup. The regressor variables are
combined in a random vector X = (X1, . . . , Xk)

T . We want to contribute to answering
the question of how strong the dependence of the response variable Y on the regressor
vector X is. The Spearman regression coefficient measures the degree of how well Y
can be approximated by a strictly increasing function of X. Hereby the distribution of
X is considered as fixed. In the framework of non-linear regression analysis, multiple
correlation has not been studied to our knowledge, with exception being the paper by
Alfons et al. (2017). This paper deals with bivariate correlations of suitable projections
of the regressors.

The main goals of the paper are to study the properties of the Spearman regression
coefficient, and to examine an estimator of the coefficient. We introduce a new statis-
tical measure on the basis of copulas. It has the advantage that it does not depend on
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the marginal distributions, and it is robust against outliers. Since the copula is invari-
ant under strictly increasing transformations (see Nelsen (2006), Theorem 2.4.3), this
invariance carries over to the dependence coefficient. The coefficient we propose here
can be deployed in regression analysis. In case of a high-dimensional vector X of re-
gressors, we are interested in those components which strongly influence the response
variable Y . Moreover, after some steps in the analysis, the problem is to find out re-
gressor variables with a strong potential for improving the model, and the residual
variable serves as response variable. In both tasks, Spearman’s regression coefficient
can be a useful tool.

Spearman’s rho, Kendall’s tau and the Gini measure are classical copula-based co-
efficients describing the dependence of two random variables (cf. Nelsen (2006), Chap-
ter 5). Multivariate extensions of such measures are investigated in several papers.
Joe (1990) introduced in his paper a general class of multivariate dependence mea-
sures connected with Kendall’s tau and Blomqvist’s beta. A multivariate extension
of Spearman’s rho is examined in Schmid and Schmidt (2007a). Similar approaches
in this direction are published by Schmid and Schmidt (2010) (a lot of references
to other papers are given there), Koch and De Schepper (2011) and Dhaene et al.
(2014). A local dependence measure is considered in Latif and Morettin (2014). In the
one-dimensional case (k = 1), a coefficient describing the lack of comonotonicity by
using a smoothing estimator is studied in Qoyyimi and Zitikis (2015). In Liebscher
(2014) the author provides another generalization of Spearman’s ρ in the case k = 1.
The striking difference of the mentioned multivariate dependence measures and our
coefficient is that the measures in the mentioned papers describe the deviation from
the independence of all components of the random vector or/and the deviation from
comonotonicity. Here comonotonicity means that any component is a strictly increas-
ing function of any other component almost surely. We pursue a different aim: the
description of the dependence of one response variable on a random vector, and the
deviation from the situation where the response variable is a monotone function of the
random vector.

The paper is organized as follows: In Section 2 we discuss the classical Spearman
coefficient. In Section 3 we introduce the new Spearman regression coefficient which
describes the dependence between a response variable and a random vector. We deal
with the estimation of this generalized coefficient in Section 4. There we give results
on the convergence rate and the asymptotic normality of the sample version of the co-
efficient. Section 5 contains two extensions of the dependence coefficient. The first one
describes the deviation from the situation of a regression function which is increasing
in some variables and decreasing in the other variables. The idea of the other extension
is to split the regressor domain into sub-cuboids and to describe the dependence on
the subsets. The reader finds the proofs in Section 6.

2. Spearman’s dependence coefficient of two variables

In this section, we consider the Spearman dependence measure of real random variables
X and Y with joint distribution functionH (cf. Section 5.1.2 in Nelsen (2006)) F andG
are the distributions of X,Y , respectively. It is assumed that F and G are continuous.
In view of Sklar’s Theorem (see Sklar (1959)), we have

H(x, y) = C(F (x), G(y)) for x, y ∈ R.
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Hereby C is the uniquely determined copula of X,Y . Next we give the definition of
Spearman’s ρ:

ρS = 1− 6 ·
∫ 1

0

∫ 1

0
(u− v)2 dC(u, v) = 12

∫ 1

0

∫ 1

0
uv dC(u, v)− 3

= 1− 6E(F (X)−G(Y ))2 = 12E (F (X)G(Y ))− 3

= 12

∫ 1

0

∫ 1

0
C(u, v) dudv − 3. (1)

In Liebscher (2014) ρS is generalized by replacing the square by a power or a function
fulfilling certain conditions. Let U = F (X), V = G(Y ). Obviously, the random vari-
ables U and V have a uniform distribution on [0, 1], and C is the joint distribution
function of (U, V ). Observe that∫ 1

0

∫ 1

0
P {U > u, V > v} dudv

=

∫ 1

0

∫ 1

0
(P {U > u}+ P {V > v}+ P {U ≤ u, V ≤ v} − 1) dudv

=

∫ 1

0

∫ 1

0
P {U ≤ u, V ≤ v} dudv.

We can rewrite the definition formula of ρS as follows in a symmetrized version:

ρS = 6

∫
[0,1]2

P {U ≤ u, V ≤ v}dudv + 6

∫
[0,1]2

P {U > u, V > v} dudv − 3. (2)

This formula is the starting point for the generalization in the next section.

3. Multivariate Spearman’s rho for regression

3.1. Introduction of the coefficient

Let Y be the real response random variable and X = (X1, . . . , Xd)
T a random vector

containing the regressor variables. We look for a measure describing the dependence of
Y on X by a monotonously increasing relationship. The distribution functions of the
components of X are denoted by F1, . . . , Fd, the distribution function of Y is denoted
by G. The distribution functions F1, . . . , Fd, G are assumed to be continuous. H is
the joint distribution function of (X1, . . . , Xd, Y ). We obtain the random vector U =
(U1, . . . , Ud)

T and the random variable V by transforming the marginal distribution
of all components of X and Y into a uniform one:

Ui = Fi(Xi), V = G(Y ).

C : [0, 1]d+1 → [0, 1] denotes the joint copula of (X1, . . . , Xd, Y ), i.e. the distribution
function of (U1, . . . , Ud, V ). The copula of vector X alone is denoted by CX . We con-
sider the joint distribution of X and hence CX as fixed and given. For x, y ∈ Rd, x ≤ y
means that xi ≤ yi for all i, similarly for x < y. Let C0 be any strictly increasing
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d-dimensional copula. The choice of C0 will be discussed later. In view of formula (2),
we consider the following generalization of Spearman’s rho

ρR = a

∫
[0,1]d+1

(P {U1 ≤ u1, . . . , Ud ≤ ud, V ≤ v}

+P {U1 > u1, . . . , Ud > ud, V > v}) dC0(u)dv − b, (3)

where u = (u1, . . . , ud)
T . In the case d = 1, a = 6, b = 3, ρR coincides with Spearman’s

rho ρS , according to (2).
We determine the parameters a and b in (3) such that the following two conditions

are fulfilled:
(i) ρR = 0 provided that X and Y are independent.
(ii)

max
C:C copula,C(u1,...,ud,1)=CX(u) ∀u∈[0,1]d

ρR(C) = 1.

Condition (ii) means that ρR ≤ 1 and the maximum of ρR can be achieved in a certain
situation discussed later.

We introduce 1() to be 1 if the condition in the parentheses is fulfilled and 0 oth-
erwise. The survival copula Č0 of C0 is given by

Č0(u1, . . . , ud) = C̄0(1− u1, . . . , 1− ud),

where

C̄0(u1, . . . , ud) =

∫
[0,1]d+1

1 (ui < ūi ∀i) dC0(ū).

To shorten formulas, we introduce a test function φ : [0, 1]d → [−1, 1]:

φ(u) = C̄0(u)− C0(u) = Č0(1− u1, . . . , 1− ud)− C0(u).

Note that φ is strictly decreasing since C0 is strictly increasing. Especially for d = 2
and 3, we have

φ(u1, u2) = 1− u1 − u2, (4)

φ(u1, u2, u3) = 1− u1 − u2 − u3 + C0(u1, u2, 1) + C0(u1, 1, u3)

+C0(1, u2, u3)− 2C0(u1, u2, u3).

Surprisingly, in the case d = 2, φ does not depend on C0. From (3), we can rewrite ρR
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using the test function

ρR = a

∫
[0,1]d+1

(P {U1 ≤ u1, . . . , Ud ≤ ud, V ≤ v}+ P {U1 > u1, . . . , Ud > ud}

−P {U1 > u1, . . . , Ud > ud, V ≤ v}) dC0(u)dv − b

= a

∫
[0,1]2d+1

P {V ≤ v | U = ū} (1 (ūi ≤ ui ∀i)− 1 (ūi > ui ∀i)) dC0(u)dCX(ū)dv

−b+ a

∫
[0,1]d

C̄X(u)dC0(u)

= a

∫
[0,1]d+1

P {V ≤ v | U = u}φ (u) dCX(u)dv − b̃, (5)

where

b̃ = b− a

∫
[0,1]d

C̄X(u)dC0(u).

To ensure condition (ii) above we have to search for a maximum of ρR. We denote
the distribution function of −φ(U) by K:

K(w) =

∫
[0,1]d

1 (−φ(u) ≤ w) dCX(u)

for w ∈ [−1, 1]. The following Proposition can be proven for ρR of (5):

Proposition 3.1. Suppose that the measure CX is absolutely continuous and C0 is
strictly increasing.
a) The coefficient ρR attains its maximum only in the case where V = K(−φ(U)) a.s.
In this case, we have

ρR = aEφ(U) (1−K(−φ (U)))− b̃.

b) The coefficient ρR attains its minimum only in the case where V = 1 −
K(−φ(U)) a.s. Then ρR is given by

ρR = aEφ(U)K(−φ (U))− b̃.

If X and Y are independent, then by (5), we have

ρR = a

∫
[0,1]d+1

φ(u) P {V ≤ v} dCX(u) dv − b̃

=
a

2
Eφ(U)− b̃.
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In the following we choose a and b̃ such that the requirements (i) and (ii) are fulfilled:

a

2
Eφ(U) = b̃,

aEφ(U) (1−K(−φ (U)))− b̃ = 1

(Ū as in Proposition 3.1). Hence

a =

(
1

2
Eφ(U)− Eφ(U)K(−φ (U))

)−1

and b̃ =
a

2
Eφ(U) (6)

hold true. Observe that by partial integration,∫ 1

0
P {V ≤ v | U = u} dv = 1− E (V | U = u) ,

such that (5) implies the final formula for ρR

ρR =
E ((1− E (V | U = u))φ (U))− 1

2Eφ (U)
1
2Eφ(U)− Eφ(U)K(−φ (U))

=
B

A
, (7)

where B := Eφ(U)− 2E (V φ(U)) , A := 2a−1. Further we obtain

A =

∫ 1

−1
z (2 K(z)− 1) dK(z)

= −
∫
[0,1]d

φ(u)

(
2

∫
[0,1]d

1 (−φ(ū) ≤ −φ (u)) dCX(ū)− 1

)
dCX(u)

=

∫
[0,1]2d

φ (u) (1− 2 · 1 (φ (u) ≤ φ(ū))) dCX(u) dCX(ū). (8)

The dependence coefficient is a functional of the copula C since CX and thus K are
fixed. This is to be seen from the formula

ρR = ρR(C) =
1

A

(
−
∫ 1

−1
z dK(z)− 2

∫
[0,1]d+1

vφ(u) dC(u1, . . . , ud, v)

)
. (9)

In the case d = 1, the function φ(u) = 1 − 2u leads to the equality ρR = ρS . Let us
proceed with the two-dimensional case.

3.2. The case d = 2

Observe that for the partial Spearman coefficients ρS(Xj , Y ) of Xj and Y , the equality

ρS(Xj , Y ) = 12EUjV − 3

holds true (j = 1, 2) in view of (1). Let (Ū1, Ū2) be an independent copy of
(U1, U2) having the same distribution function CX . Note that EUi = EV = 1

2 , and
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P
{
U1 + U2 ≥ Ū1 + Ū2

}
= 1

2 . Then by (4),

ρR =
Eφ(U)− 2E (V φ(U))

Eφ(U)− 2Eφ(U)1
{
φ (U) ≤ φ(Ū)

}
=

1− EU1 − EU2 − 2E (V (1− U1 − U2))

1− EU1 − EU2 − 2E(1− U1 − U2)1
{
U1 + U2 ≥ Ū1 + Ū2

}
=

ρS(X1, Y ) + ρS(X2, Y )

12E
(
(U1 + U2)1

(
U1 + U2 ≥ Ū1 + Ū2

))
− 6

. (10)

ρX1,Y and ρX2,Y denote Spearman’s rho for the pair of variables in the index. In view
of (10) coefficient ρR is a normed average of pairwise Spearman rho.

To this point the considerations are valid for every strictly increasing copula C0.
Regarding the estimation, the choice C0 = CX is not recommendable for two rea-
sons. First, since different C0 lead to different coefficients we lose the comparability.
Moreover, an estimator for CX has to be plugged in additionally when estimating the
coefficient. In the following, we focus on specific cases for C0.

3.3. The case C0 = Π

Here we have

φ(u) =

d∏
i=1

(1− ui)−
d∏
i=1

ui,

and in the case d = 3,

φ(u1, u2, u3) = 1− u1 − u2 − u3 + u1u2 + u1u3 + u2u3 − 2u1u2u3.

3.4. The case C0 = M

Let now C0 be the Fréchet-Hoeffding upper-bound copula M(u) = mini ui. Then

φ(u) = 1−max
i
ui −min

i
ui.

3.5. Properties of the coefficient

In the following C1 ≺ C2 denotes a concordance relationship between copulas C1,C2 :
[0, 1]2 → [0, 1] defined by C1(u1, u2) ≤ C2(u1, u2) for u1, u2 ∈ [0, 1]. The next Theorem
3.2 gives some properties of the dependence measure in the case of general C0.

Theorem 3.2. Let CX be absolutely continuous. Suppose that C0 is strictly increasing
and continuous. The regression coefficient ρR has the following properties:

a) −1 ≤ ρR ≤ 1.
b) The identity ρR = 1 holds iff V = K(−φ(U)) a.s. which is equivalent to

Y = G−1(K(−φ(F1(X1), . . . , Fd(Xd)))) a.s.. G
−1(K(−φ(.))) is a function which is

monotonously increasing in each argument.
c) If X and Y are independent, then ρR = 0. If ρR = 0, then G(Y ) and

φ(F1(X1), . . . , Fd(Xd)) are uncorrelated.
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d) Let Λ1, . . . ,Λd+1 : R → R be strictly increasing functions. The dependence mea-
sure of Λd+1(Y ) and (Λ1(X1), . . . ,Λd(Xd)) equals ρR.

e) The dependence measure of −Y and X is given by −ρR.
f) The dependence measure of Y and −X is equal to −ρR.
g) Let {Cn} be a sequence of copulas satisfying Cn(u1, . . . , ud, 1) = CX(u) and

tending pointwise to C. Then ρR(Cn) → ρR(C), where ρR(C) is defined in (9).
h) Let ρR1 and ρR2 be the regression coefficients for (X(1), Y (1)) and (X(2), Y (2)),

and C̄1, C̄2 : [0, 1]2 → [0, 1] are the resulting copulas of −φ(F1(X1), . . . , Fd(Xd)) and
Y . Assume that CX(1) = CX(2), and C̄1 ≺ C̄2. Then we have

ρR1 ≤ ρR2.

In Theorem 3.2 we prove properties of the regression coefficient which are similar to
those for measures of concordance according to Scarsini (1984). A nice feature is that
we can exactly describe the situations for which ρR = ±1 and ρR = 0 occurs. Assertion
b) means that ρR = 1 occurs exactly in the case where Y is a monotonously increasing
function ofX1, . . . , Xd a.s. and this function is defined in terms ofG,K,φ, and the Fj ’s.
From parts b) and e) of Theorem 3.2, it follows that ρR = −1 ⇐⇒ V = 1−K(−φ(U))
a.s. In the case C0 = Π, C0 is strictly increasing and φ is continuously differentiable
so that important assumptions of Theorem 3.2 are fulfilled.

4. Estimation of Spearman’s regression coefficient

Let (X̄1, Y1), . . . , (X̄n, Yn) be a sample of independent random vectors from Rd+1

having distribution function H. Here X̄i = (X
(1)
i , . . . , X

(d)
i )T . The empirical distri-

bution functions of X1, . . . , Xd and Y are denoted by F1n, . . . Fdn, Gn. Let F (x) =
(F1(x1), . . . , Fd(xd))

T , F̄n(x) = (F1n(x1), . . . , Fdn(xd))
T and Zin = −φ(F̄n(X̄i)). Tak-

ing into account (7) and (8), we introduce the estimator for ρR:

ρ̂Rn =
B̂n

Ân
,

where Ân and B̂n are estimators for A and B, respectively:

B̂n =
1

n

n∑
i=1

φ(F̄n(X̄i)) (1− 2Gn(Yi)) ,

Ân =
1

n2

n∑
i=1

n∑
j=1

φ(F̄n(X̄i))
(
1− 2 · 1

{
φ(F̄n(X̄i)) ≤ φ(F̄n(X̄j))

})
.

Next we look for formulas for Ân and B̂n which are computationally more favourable.
We have

B̂n =
1

n2

n∑
i=1

Zin

n∑
j=1

(2 · 1 {Yj ≤ Yi} − 1)

=
1

n2

n∑
i=1

Zin (2 ·RY (Yi)− n) ,
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where RY (Yi) is the rank of Yi among Y1, . . . , Yn. Let Z(1)n, . . . , Z(n)n be the order
statistics of Z1n, . . . , Znn. Further

Ân =
1

n2

n∑
i=1

n∑
j=1

Zin (2 · 1 {Zin ≥ Zjn} − 1)

=
1

n2

n∑
i=1

Z(i)n (2i− n) . (11)

The convergence rate of ρ̂Rn is provided in Theorem 4.2 under appropriate conditions.
One of them is given now.

Assumption C: Suppose that C0 is strictly increasing and continuously differen-
tiable, and CX has a bounded density cX . For w = (u1, . . . , ul−1, ul+1, . . . , ud) ∈ Rd−1,
−1
φ̄w defines the inverse function of φ̄w : ul ⇝ φ(u). Let Iz = {w ∈ [0, 1]d−1 : −φ(0, w) ≤
z ≤ −φ(1, w)}. Moreover, the identity

sup
z∈[−1,1]

∫
Iz

φl(u1, . . . , ul−1,
−1
φ̄w(z), ul+1, . . . , ud)

−1 dw < +∞

holds true. Here φl : u⇝
∂φ(u)
∂ul

. ⊡

−1
φ̄w exists since φ is strictly decreasing and continuous. The next Lemma deals with

the important case C0 = Π.

Lemma 4.1. Assumption C is satisfied if cX is bounded and C0 = Π.

The following theorem provides the convergence rate of the estimator ρ̂Rn.

Theorem 4.2. Suppose that Assumption C is satisfied. Then

ρ̂Rn − ρR = O

(√
ln lnn

n

)
a.s.

Next we give a result on asymptotic normality of ρ̂Rn under stronger assumptions.
This Theorem 4.3 can be used to construct confidence intervals.

Theorem 4.3. Suppose that Assumption C is satisfied, and the partial derivatives of
C0 exist and are Hölder-continuous. Then we have

√
n (ρ̂Rn − ρR)

D−→ N (0, σ2ρ),

131



Asian Journal of Statistical Sciences Eckhard Liebscher

where σ2ρ = 4EΛ̄2((X1, Y1)), Λ(y) = −
∫ 1
y (2K(z)− 1)dz,

Λ̄(x, y) = −B

∫
Rd

d∑
j=1

φ̄j(F̄ (x̄)) (1 {xj ≤ x̄j} − Fj(x̄j)) dF (x̄)

+Λ(−φ(F̄ (x)))−
∫ 1

−1
Λ(z)dK(z)

)

+A

 ∫
Rd+1

d∑
j=1

φj(F̄ (x̄)) (1 {xj ≤ x̄j} − Fj(x̄j)) (1− 2G(ȳ)) dH(x̄, ȳ)

−2

∫
Rd+1

φ(F̄ (x̄)) (1 {y ≤ ȳ} −G(ȳ)) dH(x̄, ȳ) + φ(F̄ (x)) (1− 2G(y))−B

 .

Here φ̄1, . . . , φ̄d are the partial derivatives of Λ(−φ(.)), φ1, . . . , φd are the partial
derivatives of φ.

For constructing confidence intervals, one needs an estimator for σ2ρ. It can be
developed by replacing H by Hn, K by Kn, Fj by Fjn and G by Gn. The asymptotic
normality of the classical Spearman coefficient and some versions of it is shown in
Genest et al. (2013). Our Theorem 4.3 represents a similar result.

5. Extended versions of the Spearman regression coefficient

5.1. Versions for increasing and decreasing components

Sometimes one is interested in measuring to which degree the response variable Y
depends on a function of the regressors which is increasing in variables xi, i ∈ I
and decreasing in variables xi, i ∈ {1, . . . , d}\I. Let δi = 0 for i ∈ I, δi = 1 for
i ∈ {1, . . . , d}\I, δ = (δ1, . . . , δd). For any δ ∈ {0, 1}d, the transformed regressor vector
is introduced by X̃δ = ((−1)δiXi)i=1,...,d. The coefficient ρR of X̃δ and Y according
to (7) measures how well the variable Y can be approximated by a function which is
increasing in variables xi, i ∈ I and decreasing in the remaining variables. We denote
this coefficient and its estimator by ρR(Y | X̃) and ρ̂R(Y | X̃), respectively. The
coefficient ρR(Y | X̃) is an analogous version of τR(Y | X̃) from the author’s paper
(2021).

More specifically, in the case d = 2, there are four coefficients, in principle: ρR(Y |
X1, X2), ρR(Y | −X1, X2), ρR(Y | X1,−X2), ρR(Y | −X1,−X2) with the relationships
(following from Theorem 3.2f))

ρR(Y | −X1,−X2) = −ρR(Y | X1, X2), ρR(Y | −X1, X2) = −ρR(Y | X1,−X2).

The coefficient ρR(Y | X1,−X2) describes how well the variable Y can be approxi-
mated by a function which is increasing in the first component and decreasing in the
second one. Other coefficients are interpreted similarly. Overall only two coefficients
are to be computed. A comparison of these values shows the most probable direction
of ascent of an approximating function.
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Example 1: We consider the dataset ”Concrete Compressive Strength” from the
UCI Machine Learning Repository. The last variable ”compressive strength” is the
response variable Y , the remaining variables serve as regressors and are denoted by
x1, . . . , x8. We obtain the following empirical coefficients

ρ̂R(Y | X1, X2, X3,−X4, X8) = 0.81702, ρ̂R(Y | X1, X2,−X3,−X4, X8) = 0.78706,

ρ̂R(Y | X1,−X4) = 0.54025, ρ̂R(Y | X1, X8) = 0.76406.

The highest values indicate that there can be found suitable model functions to model
the dependence of Y and the regressors. In view of these results it is expected that Y
can be well approximated by a function which is increasing in the variables x1, x2, x3, x8
and decreasing in x4.

5.2. Splitting the domain

Consider the splitting point q ∈ (0, 1)d which divides the copula plane [0, 1]d into 2d

subregions. For ν ∈ {0, 1}d, let Iν = {u ∈ [0, 1]d : ui ≤ qi for i : νi = 1, ui > qi for
i : νi = 0}. Especially in the case d = 2, we obtain I(1,1) = {u : u1 ≤ q1, u2 ≤ q2},
I(1,0) = {u : u1 ≤ q1, u2 > q2}, I(0,1) = {u : u1 > q1, u2 ≤ q2}, I(0,0) = {u : u1 >

q1, u2 > q2}. We introduce the distribution functions F δ,νi and Gν of (−1)δiXi and

Y , respectively, given U ∈ Iν . Further we define U δ,ν = (F δ,νi ((−1)δiXi))i=1...d and
V ν = Gν(Y ) for δ, ν ∈ {0, 1}d. Kδ,ν denotes the distribution function of −φ(U δ,ν)
given U ∈ Iν . On the subregions the denominator A and the numerator B of the
dependence coefficient are computed by the formulas

Aδ,ν = E
(
φ(U δ,ν)− 2φ(U δ,ν)Kδ,ν(−φ

(
U δ,ν

)
)) | U ∈ Iν

)
,

Bδ,ν = E
(
(1− 2V ν)φ(U δ,ν) | U ∈ Iν

)
for δ, ν ∈ {0, 1}d, which leads to the dependence coefficients

ρδ,νRS =
Bδ,ν

Aδ,ν
(12)

for δ, ν ∈ {0, 1}d. ρδ,νRS represents the Spearman regression coefficient for direction δ and

the data satisfying U ∈ Iν . If ρδ,νRS is close to 1, then it means that given U ∈ Iν , Y can
be well-approximated by a function which is increasing w.r.t. xi with i : δi = 0, and
decreasing w.r.t. xi with i : δi = 1. A multivariate Spearman coefficient on subregions
is considered in Schmid and Schmidt (2007b) using similar ideas.

Based on the construction principle in Liebscher (2021), we introduce a general
regression coefficient for the split domain

ρRS = max
∆:{0,1}d→{0,1}d

B(∆)

A(∆)
, (13)
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where

A(∆) =
∑

ν∈{0,1}d

P{U ∈ Iν}A∆(ν),ν , B(∆) =
∑

ν∈{0,1}d

P{U ∈ Iν}B∆(ν),ν .

The maximum is taken over all functions ∆ : {0, 1}d → {0, 1}d assigning a directional

vector δ to each subregion. Let nν =
∑n

i=1 1
{
F̄n(Xi) ∈ Iν

}
, X̃δ

i = ((−1)δjX
(j)
i )j=1...d,

and

Gνn(y) =
1

nν

n∑
i=1

1
{
Yi ≤ y, F̄n(Xi) ∈ Iν

}
,

F δ,νnj (z) =
1

nν

n∑
i=1

1
{
(−1)δjX

(j)
i ≤ z, F̄n(Xi) ∈ Iν

}
for j = 1 . . . d, y, z ∈ R. Furthermore, we define (F̄ δ,νn (x) = (F δ,νnj (xj))j=1...d)

Aδ,νn =
1

n2ν

n∑
i=1

n∑
k=1

φ(F̄ δ,νn (X̃δ
i ))
(
1− 2 · 1

{
φ(F̄ δ,νn (X̃δ

i )) ≤ φ(F̄ δ,νn (X̃δ
k))
})

1
{
F̄n(Xi), F̄n(Xk) ∈ Iν

}
,

Bδ,ν
n =

1

nν

n∑
i=1

(1− 2Gνn(Yi))φ(F̄
δ,ν
n (X̃δ

i ))1
{
F̄n(Xi) ∈ Iν

}
.

In a straightforward way, we can establish the estimators for ρδ,νRS and ρRS

ρ̂δ,νRS =
Bδ,ν
n

Aδ,νn
, ρ̂RS = max

∆:{0,1}d→{0,1}d

Bn(∆)

An(∆)
,

where

An(∆) =
∑

ν∈{0,1}d

nνA
∆(ν),ν
n , Bn(∆) =

∑
ν∈{0,1}d

nνB
∆(ν),ν
n

In applications, lower dimensional considerations should be preferable with a view to

the high complexity of values ρδ,νRS for large d. For d = 2, we can write

ρ̂RS = max
∆(0,0)...∆(1,1)∈{0,1}2

(
n(1,1)B

∆(1,1),(1,1)
n + n(0,1)B

∆(0,1),(0,1)
n

+n(1,0)B
∆(1,0),(1,0)
n + n(0,0)B

∆(0,0),(0,0)
n

)
(
n(1,1)A

∆(1,1),(1,1)
n + n(0,1)A

∆(0,1),(0,1)
n

+n(1,0)A
∆(1,0),(1,0)
n + n(0,0)A

∆(0,0),(0,0)
n

)−1
.

Simultaneously, the directions δ leading to the maximum in (13) can be taken into
account. These directions contain the information about the shape of the function
behind the data. Example 2 should illustrate this aspect.
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Figure 1. left: directions of maximum dependence (original data), right: fitted quadratic model according to
(5.2)

Example 2: Dataset ”ethanol” from single-cylinder engine study of exhaust emis-
sions by Brinkman (1981). NOX is the response variable indicating the nitrogen oxide
exhaust of the engine. C and E are the regressor variables. We choose the splitting
point q1 = q2 = 0.5. Then the regression coefficient (13) is estimated. The results are
as follows (for each split region the maximum value is underlined)

ρ̂
(0,0),(1,1)
RS = 0.82239, ρ̂

(0,1),(1,1)
RS = −0.68636,

ρ̂
(0,0),(1,0)
RS = −0.79158, ρ̂

(0,1),(1,0)
RS = 0.71671,=⇒ ρ̂

(1,1),(1,0)
RS = 0.79158,

ρ̂
(0,0),(0,1)
RS = 0.75043, ρ̂

(0,1),(0,1)
RS = −0.63966,

ρ̂
(0,0),(0,0)
RS = −0.74490, ρ̂

(0,1),(0,0)
RS = −0.70009,=⇒ ρ̂

(1,1),(0,0)
RS = 0.74490

ρ̂RS = 0.77101.

For each subregion, the maximum dependence coefficient is underlined. The maximizer
for ρ̂RS is given by (1, 1) ⇝ (0, 0), (1, 0) ⇝ (1, 1), (0, 1) ⇝ (0, 0), (0, 0) ⇝ (1, 1). The
same result is obtained by looking for the most relevant directions (highest value of

ρδ,νRS) in the particular subregion. In the left part of Figure 1, we see the expected
directions of the slope of the function (according to the mentioned maximizer) in the
four split regions.

In the next step we fit the following regression model to the data:

Yi = β1 + β2ci + β3ei + β4ciei + β5e
2
i + εi

where ε1, . . . , εn are independent random variables with zero mean and Var(εi) =
σ2. Using least squares estimation the regression function is fitted. This function is
depicted in the right part of Figure 1. We compute the residuals ε̂i = Yi − Ŷi and
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analyze the dependence on the regressors:

ρ̂
(0,0),(1,1)
RS = 0.72029, ρ̂

(0,1),(1,1)
RS = −0.31364,

ρ̂
(0,0),(1,0)
RS = −0.12421, ρ̂

(0,1),(1,0)
RS = −0.08959,=⇒ ρ̂

(1,1),(1,0)
RS = 0.12421,

ρ̂
(0,0),(0,1)
RS = 0.12791, ρ̂

(0,1),(0,1)
RS = −0.31343,=⇒ ρ̂

(1,0),(0,1)
RS = 0.31343

ρ̂
(0,0),(0,0)
RS = 0.16761, ρ̂

(0,1),(0,0)
RS = 0.08778,

ρ̂RS = 0.31315.

Here the minimizer for ρ̂RS is given by (1, 1) ⇝ (0, 0), (1, 0) ⇝ (1, 1), (0, 1) ⇝
(1, 0), (0, 0) ⇝ (0, 0). We see that there is only low dependence of the residuals on
the regressors C and E. Perhaps one can model a dependence only in the region (1, 1).

6. Proofs

6.1. Auxiliary statements

In the first lemma we prove an important property of K.

Lemma 6.1. Assume that the measure CX is absolutely continuous and C0 is strictly
increasing. Then K is continuous and K(−φ(U)) has a continuous uniform distribu-
tion on [0, 1].

Proof: Let (wn) be a sequence of real numbers with wn ↑ w,wn < w. Applying
the dominated convergence theorem, we obtain

K(w)−K(wn) =

∫
[0,1]d

1 (wn < −φ(u) ≤ w) dCX(u) →
∫
[0,1]d

1 (−φ(u) = w) dCX(u)

for n → ∞. The integral on the right hand side gives value 0 since −φ is strictly
increasing and CX is absolutely continuous. Hence K is continuous. The lemma is
now a consequence of Proposition 2(1) in Embrechts and Hofert (2013). ⊡

In Lemma 6.2, we prove a consequence of Assumption C. Then the validity of Lemma
4.1 is shown.

Lemma 6.2. Let Assumption C be fulfilled. Then K has a bounded density.

Proof: Without loss of generality, let l = 1. For w ∈ [0, 1]d−1,
−1
φ̄w and φu1

(., w)
denote the inverse function and the derivative of φ(., w). First we show that φu1

(., w)
is bounded from below. Let T = (T1, . . . , Td)

T be a random vector having distribution
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function C0, and T̃ = (T2, . . . , Td)
T . Then

φu1
(u) =

∂

∂u1
(P {T > u} − P {T ≤ u})

=
∂

∂u1

(∫ 1

1−u1

P
{
T̃ > u | T1 = z

}
dz −

∫ u1

0
P
{
T̃ ≤ u | T1 = z

}
dz

)
= −P

{
T̃ > ũ | T1 = u1

}
− P

{
T̃ ≤ ũ | T1 = u1

}
(14)

holds for a.e. u ∈ [0, 1]d, ũ = (u2, . . . , ud)
T . Observe that φ is strictly decreasing. Let

X̃ = (X2, . . . , Xd)
T , Ũ = (U2, . . . , Ud)

T . For the density fZ of K, we obtain

fZ(z) ≤ sup
u∈[0,1]d

cX(u)

∫
Rz

(
−φu1

(
−1
φ̄w(−z), w)

)−1

dw

for z ∈ [−1, 1], which is bounded by assumption C. ⊡

Proof of Lemma 4.1: Without loss of generality, let l = 1. Suppose that C0 = Π.
In view of (14), we have then

φu1
(u) = −P

{
T̃ > ũ

}
− P

{
T̃ ≤ ũ

}
= −

 d∏
j=2

(1− uj) +

d∏
j=2

uj


for u ∈ [0, 1]d. The maximum of the integral I(z) =

∫
Rz

(
−φu1

(
−1
φ̄w(−z), w)

)−1

dw is

achieved for z = 0 since Rz ⊂ R0. We now show that I(0) < +∞. In the integral I(0),
the range Rz of integration can be divided into subranges R̄2 × R̄3 × . . .× R̄d, where

R̄j ∈ {[0, 12 ], [
1
2 , 1]}. Obviously, −φu1

(
−1
φ̄w(−z), w) is bounded from below by a positive

number on [0, 12 ]
d−1 and [12 , 1]

d−1, and the integral over these subranges is finite. For

d = 2, the proof is already complete here. Let d ≥ 3, J1 = {j ≥ 4 : R̄j = [0, 12 ]},
and J2 = {j ≥ 4 : R̄j = [12 , 1]}. Now we consider one representative of the remaining

subranges [0, 12 ]× [12 , 1]× R̄3 × . . .× R̄d, and the corresponding part of integral I:

Ĩ =

∫
[0, 1

2
]×[ 1

2
,1]×R̄4×...×R̄d

 d∏
j=2

uj +

d∏
j=2

(1− uj)

−1

du2du3dũ
(d−3),

137



Asian Journal of Statistical Sciences Eckhard Liebscher

where ũ(d−3) = (u4, . . . , ud)
T . We deduce

Ĩ ≤ 2d−3

∫
[0, 1

2
]×[ 1

2
,1]×R̄4×...×R̄d

u2 ∏
j∈J1

uj + (1− u3)
∏
j∈J2

(1− uj)

−1

du2du3dũ
(d−3)

= 2d−3

∫
[0,1/2]d−1

u2 ∏
j∈J1

uj + u3
∏
j∈J2

uj

−1

du2du3dũ
(d−3)

= 2d−3

∫
[0,1/2]d−3

∏
j≥4

uj

−1 ∫ 2−1
∏

j∈J2
uj

0

∫ 2−1
∏

j∈J1
uj

0
(u2 + u3)

−1 du2du3dũ
(d−3)

≤ 2d−2

∫
[0,1/2]d−3

∏
j≥4

uj

−12−1
∏
j∈J1

uj

1/22−1
∏
j∈J2

uj

1/2

dũ(d−3)

= 2d−3

∫
[0,1/2]d−3

∏
j≥4

uj

−1/2

dũ(d−3) < +∞

since ∫ a

0

∫ b

0
(u2 + u3)

−1 du2du3 = a ln

(
1 +

b

a

)
+ b ln

(
1 +

a

b

)
≤ 2

√
ab

The parts of I over other subranges can be handled similarly. Hence I(0) < +∞ follows
which completes the proof. ⊡

The following two lemmas will be used in the proof of Proposition 3.1. Subsequently,
we analyse extremal property of the functional

Iψ :=

∫
[0,1]d

φ (u)ψ(u)dCX(u),

where ψ : [0, 1]d → R is a measurable function. Function φ is introduced in Section
3.1.

Lemma 6.3. Let v ∈ (0, 1) be given, and Ψ be the set of measurable functions ψ :
[0, 1]d → R with 0 ≤ ψ(u) ≤ 1 and∫

[0,1]d
ψ(u)dCX(u) = v. (15)

Assume that the measure CX is absolutely continuous and C0 is strictly increasing.
Then Iψ attains its maximum on the set Ψ at ψ0, where ψ0(u) = 1(K(−φ (u)) ≤ v)
for u ∈ [0, 1]d. Moreover,

Iψ < Iψ0
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holds for all functions ψ ∈ Ψ which differ from ψ0 on a set of positive CX-measure.

Proof: Function ψ0 fulfils condition (15) since by Lemma 6.1,∫
[0,1]d

ψ0(u)dCX(u) = P {K(−φ (U)) ≤ v} = v.

Let J := {u ∈ [0, 1]d : K(−φ (u)) < v}, J̃ := {u ∈ [0, 1]d : K(−φ (u)) > v}, and
J̄ := {u ∈ [0, 1]d : K(−φ (u)) = v}. We consider an arbitrary function ψ ∈ Ψ which
differs from ψ0 on a set D ⊂ [0, 1]d of positive CX -measure. Let ∆(u) := ψ(u)−ψ0(u).
Therefore by 0 ≤ ψ(u) ≤ 1 and (15), function ∆ satisfies D = {u : ∆(u) ̸= 0},
∆(u) < 0 for u ∈ J ∩D, ∆(u) > 0 for u ∈ J̃ ∩D, and∫

[0,1]d
∆(u)dCX(u) = 0. (16)

We introduce the generalized inverse K(−1)(v) = inf{z0 : K(z0) ≥ v}. For u ∈ J ,
inequality φ(u) + K(−1)(v) > 0 holds. For u ∈ J̃ , inequality φ(u) + K(−1)(v) ≤ 0 is
satisfied. By Lemma 6.1, J̄ has zero CX -measure. Since φ is strictly decreasing and
the CX -measure is absolutely continuous, the set {u : φ(u) +K(−1)(v) = 0} has zero
CX -measure. Hence

(
φ(u) +K(−1)(v)

)
∆(u) < 0 holds CX -almost all u ∈ (J ∪ J̃)∩D.

Moreover by (16), we obtain

Iψ = Iψ0+∆ = Iψ0
+

∫
[0,1]d

φ (u)∆(u)dCX(u)

= Iψ0
+

∫
[0,1]d

(
φ(u) +K(−1)(v)

)
∆(u) dCX(u)

= Iψ0
+

∫
(J∪J̃)∩D

(
φ(u) +K(−1)(v)

)
∆(u) dCX(u) < Iψ0

which proves the lemma. ⊡

Lemma 6.4. For two copulas C̄1, C̄2 : [0, 1]
2 → [0, 1] satisfying C̄1 ≺ C̄2, we have∫

[−1,1]×[0,1]
z (1− 2v) dC̄1(K(z), v) ≥

∫
[−1,1]×[0,1]

z (1− 2v) dC̄2(K(z), v).

Proof: Define

η =

∫
[−1,1]×[0,1]

(1− z) dC̄j(K(z), v) = 1−
∫ 1

−1
z dK(z).
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Since E (1− 2V ) = 0 holds true, we obtain∫
[−1,1]×[0,1]

z (1− 2v) dC̄j(K(z), v)

=

∫
[−1,1]×[0,1]

(−1 + z) (1− 2v) dC̄j(K(z), v)

= −2

∫
[−1,1]×[0,1]

(1− z) (1− v) dC̄j(K(z), v) + η

= −2

∫
[−1,1]×[0,1]

(∫ 1

v

∫ 1

z
dz̄dv̄

)
dC̄j(K(z), v) + η

= −2

∫
[−1,1]×[0,1]

C̄j(K(z), v)dzdv + η (17)

by integrating by parts. Since C̄1 ≺ C̄2 ⇔ C̄1(u) ≤ C̄2(u) holds for u ∈ [0, 1]2, the
lemma follows immediately from (17). ⊡

The following lemma is used several times in proofs of convergence rates concerning
the estimator of ρR. Here Fjn is the empirical distribution function of Xj , and F̄n(x) =
(F1n(x), . . . , Fdn(x))

T for x ∈ Rd.

Lemma 6.5. Assume that F1, . . . , Fd are continuous.
a) Then

max
j=1...d

sup
x∈Rd

|Fjn(x)− Fj(x)| ≤ κ1

√
ln lnn

n
a.s.,

sup
y∈R

|Gn(y)−G(y)| ≤ κ1

√
ln lnn

n
a.s.

for n ≥ n0(ω) with a constant κ1 >
1
2

√
2.

b) Then

sup
x∈Rd

∣∣φ(F̄n(x))− φ(F̄ (x))
∣∣ ≤ κ2

√
ln lnn

n
a.s.

for x ∈ Rd, n ≥ n1(ω), where κ2 > d2dκ1 is a constant.

Proof: Assertion a) follows from the law of iterated logarithm for the empirical
process (cf. Van der Vaart (1998), p. 268, for example).
b) Note that

sup
u,ū∈[0,1]d

|φ(u)− φ(ū)| ≤ (2d − 1)

d∑
j=1

|uj − ūj | .

Apply the inequality of part a) to obtain assertion b). ⊡
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6.2. Proofs of the main statements

Proof of Proposition 3.1: Define the conditional distribution function of V given
u ∈ [0, 1] by

FV |U=u(v) = P {V ≤ v | U = u}

for v ∈ [0, 1]. Note that∫
[0,1]d

FV |U=u(v) dCX(u) = P {V ≤ v} = v

for v ∈ [0, 1]. Let us fix v ∈ [0, 1]. Applying Lemma 6.3 we obtain that for every
v ∈ (0, 1), the maximum of ∫

[0,1]d
φ(u) FV |U=u(v) dCX(u)

is attained in the case where

FV |U=u(v) = 1 (K(−φ(u)) ≤ v) for u ∈ [0, 1] (18)

or for a function u⇝ FV |U=u(v) differing from (18) on a set of zero CX -measure. This
implies V = K(−φ(U)) a.s. Next we compute the maximum value ρ∗R of ρR in this
case using (5):

ρ∗R = a

∫
[0,1]d+1

φ (u)1 (K(−φ (u)) ≤ v) dCX(u) dv − b̃

= a

∫
[0,1]d

φ (u) (1−K(−φ (u))) dCX(u)− b̃.

This leads to assertion a). Now we consider the minimum value ρ∗∗R of ρR and first
that of ρ̄(v, FV |U=u) for any fixed v ∈ (0, 1). Observe that for v ∈ [0, 1],∫

[0,1]d
φ(u) FV |U=u(v) dCX(u)

= Eφ(U)−
∫
[0,1]d

φ(u) P {1− V < 1− v | U = u} dCX(u)

= Eφ(U)−
∫
[0,1]d

φ(u) F1−V |U=u(1− v) dCX(u). (19)

Moreover, we have∫
[0,1]d

F1−V |U=u(1− v) dCX(u) = P {V > v} = 1− v.
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An application of Lemma 6.3 yields that for v ∈ [0, 1], the integral (19) reaches its
minimum at

F1−V |U=u(1− v) = 1 (K(−φ(u)) ≤ 1− v) for u ∈ [0, 1] (20)

or for a function u⇝ F1−V |U=u(1−v) differing from (20) on a set of zero CX -measure.
This, in turn, is equivalent to V = 1−K(−φ(U)) a.s. The minimum value ρ∗∗R of ρR
is given by

ρ∗∗R = a

(
Eφ(U)−

∫
[0,1]d+1

φ(u) 1 (K(−φ(u)) ≤ 1− v) dCX(u)dv

)
− b̃

= a

(
Eφ(U)−

∫
[0,1]d

φ(u) (1−K(−φ(u))) dCX(u)

)
− b̃.

This proves the Proposition. ⊡
Proof of Theorem 3.2: Proposition 3.1 and (6) imply assertions a) and b). In

view of (6), ρR = 0 holds for independent Y and X. If ρR = 0 is satisfied, then B = 0

0 = E ((1− 2V )φ(U)) = −2 (EV φ(U)− EV Eφ(U))

showing the validity of c).
d) Since (Λ1(X1), . . . ,Λd(Xd),Λd+1(Y )) has the same copula C as (X1, . . . , Xd, Y ) and
ρR is based on this copula, the assertion d) follows immediately.
e) For the dependence measure ρ̃R of −Y and X, we obtain

ρ̃R =
Eφ(U)− 2E ((1− V )φ(U))

Eφ(U)− 2Eφ(U)K(−φ (U))
= −ρR.

f) Let Ũ = (1− U1, . . . , 1− Ud)
T . Observe that

φ(Ũ) = C̄0(Ũ)− C0(Ũ) = C0(U)− C̄0(U) = −φ(U).

For the dependence measure ρ̆R of Y and −X, we have

ρ̆R =
−Eφ(U) + 2E (V φ(U))

−Eφ(U) + 2Eφ(U)1
{
φ (U) ≥ φ(Ū)

}
=

−Eφ(U) + 2E (V φ(U))

Eφ(U)− 2Eφ(U)1
{
φ (U) < φ(Ū)

} = −ρR.

g) This part is a consequence of the Portmanteau theorem (see e.g. Van der Vaart
(1998), p. 6).
h) If C̃ is the copula of −φ(U) and V , then we have

ρR = −a ·
∫
z (1− 2v) dC̃(K(z), v),

where a > 0. An application of Lemma 6.4 leads to assertion h). ⊡
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Next we prove the asymptotic normality of Spearman’s rho. For this purpose we
analyse first the asymptotics of An. Let Zin = −φ(F̄n(X̄i)), Zi = −φ(F̄ (X̄i)). We
introduce

Kn(z) =
1

n

n∑
i=1

1 {Zin ≤ z} , K̄n(z) =
1

n

n∑
i=1

1 {Zi ≤ z}

for z ∈ [−1, 1]. The next lemma provides the convergence rate of Kn −K.

Lemma 6.6. Assume that K has a bounded density. Then

sup
z∈[−1,1]

|Kn(z)−K(z)| = O

(√
lnn

n

)
a.s.

Proof: From the law of iterated logarithm for the empirical process (cf. Van der
Vaart (1998), p. 268), we conclude

sup
z∈[−1,1]

∣∣K̄n(z)−K(z)
∣∣ = O

(√
ln lnn

n

)
. (21)

Note that

Kn(z)− K̄n(z) =
1

n

n∑
i=1

(1 {Zin ≤ z} − 1 {Zi ≤ z}) = K1n(z)−K2n(z)

for z ∈ [−1, 1], where

K1n(z) =
1

n

n∑
i=1

1 {Zin ≤ z, Zi > z} ,

K2n(z) =
1

n

n∑
i=1

1 {Zi ≤ z, Zin > z} .

Let γn = κ2

√
ln lnn
n . By Lemma 6.5b),

Z̃in := φ(F̄n(X̄i))− φ(F̄ (X̄i)) ≥ −γn.
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Furthermore by (21), we obtain

K1n(z) =
1

n

n∑
i=1

1
{
Zi + Z̃in ≤ z, Zi > z

}
≤ 1

n

n∑
i=1

1 {z < Zi ≤ z + γn}

= K̄n(z + γn)− K̄n(z)

≤ O

(√
ln lnn

n

)
+ P {z < Zi ≤ z + γn} . (22)

On the other hand, we have

sup
z∈[−1,1]

P {z < Zi ≤ z + γn} = sup
z∈[−1,1]

∣∣∣∣∫ z+γn

z
ψ(t)dt

∣∣∣∣ = O(γn) = O(

√
ln lnn

n
) (23)

since the density ψ of Zi is bounded. The identities (22) and (23) imply

sup
z∈[−1,1]

K1n(z) = O

(√
ln lnn

n

)
.

Analogously, one proves that

sup
z∈[−1,1]

K2n(z) = O

(√
ln lnn

n

)
.

The previous two identities together with (21) complete the proof. ⊡

Observe that by (11),

Ân =
1

n

n∑
i=1

Zin

 2

n

n∑
j=1

1{Zin ≥ Zjn} − 1


=

1

n

n∑
i=1

Zin (2Kn(Zin)− 1) . (24)

We introduce Λ(y) = −
∫ 1
y (2K(z)− 1)dz. The next lemma gives an asymptotic repre-

sentation of Ân.

Lemma 6.7. Assume that Zi has a bounded density.
a) Then

Ân −A = O

(√
ln lnn

n

)
a.s.
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b) Suppose in addition that the partial derivatives φj of φ are Hölder-continuous.
We obtain

Ân −A = Ān + Ăn + o(n−1/2) a.s.,

where the partial derivatives of Λ(−φ(.)) are denoted by φ̄1, . . . , φ̄d, and

Ān =
1

n

n∑
i=1

Λ(Zi)−
∫ 1

−1
Λ(z)dK(z),

Ăn =
1

n

n∑
i=1

 d∑
j=1

φ̄j(F̄ (X̄i))
(
Fjn(X

(j)
i )− Fj(X

(j)
i )
) .

Proof: In view of (8) and (24), we have

Ân −A =
1

n

n∑
i=1

Zin (2Kn(Zin)− 1)−
∫ 1

−1
z(2K(z)− 1)dK(z)

= 2A1n +A2n, (25)

where

A1n =
1

n

n∑
i=1

Zin (Kn(Zin)−K(Zin))−
∫ 1

−1
z(Kn(z)−K(z))dK(z),

A2n =

∫ 1

−1
z(2K(z)− 1)d(Kn(z)−K(z)) + 2

∫ 1

−1
z(Kn(z)−K(z))dK(z).

Let Z(i)n be the i-th order statistic of Zn1, . . . , Znn. We deduce

1

n

n∑
i=1

ZinKn(Zin) =
1

n

n∑
i=1

Z(i)nKn(Z(i)n) =
1

n

n∑
i=1

Z(i)n ·
i

n

=
1

2

n∑
i=1

Z(i)n

(
K2
n(Z(i)n)−K2

n(Zn(i) − 0)
)
+

1

2n2

n∑
i=1

Z(i)n

=
1

2

∫ 1

−1
z dK2

n(z) +O(n−1) a.s.
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Further, we obtain

A1n =
1

2

∫ 1

−1
z dK2

n(z)−
∫ 1

−1
zK(z) dKn(z)−

∫ 1

−1
z(Kn(z)−K(z))dK(z) +O(n−1)

=
1

2

(∫ 1

−1
z dK2

n(z)− 2

∫ 1

−1
zK(z) dKn(z)− 2

∫ 1

−1
zKn(z) dK(z)

+2

∫ 1

−1
zK(z) dK(z)

)
+O(n−1)

=
1

2

∫ 1

−1
z dz(Kn(z)−K(z))2 +O(n−1)

= −1

2

∫ 1

−1
(Kn(z)−K(z))2dz = O(ln lnn n−1) a.s. (26)

by integration by parts and by applying Lemma 6.6. Next we analyze the asymptotics
of A2n. Note that Λ′(y) = 2K(z)− 1,Λ(1) = 0. By integration by parts, we derive

A2n =

∫ 1

−1
z dz ((Kn(z)−K(z))(2K(z)− 1))

= −
∫ 1

−1
(Kn(z)−K(z))(2K(z)− 1)dz

= − 1

n

n∑
i=1

∫ 1

−1
1 {Zin ≤ z} (2K(z)− 1)dz +

∫ 1

−1
K(z)(2K(z)− 1)dz

= − 1

n

n∑
i=1

∫ 1

Zin

(2K(z)− 1)dz −
∫ 1

−1
Λ(z)dK(z)

=
1

n

n∑
i=1

Λ(Zin)−
∫ 1

−1
Λ(z)dK(z). (27)

a) An application of the law of iterated logarithm leads to

Ān :=
1

n

n∑
i=1

Λ(Zi)−
∫ 1

−1
Λ(z)dK(z) = O

(√
ln lnn

n

)
a.s. (28)

Note that Λ has the bounded derivative 2K(.) − 1, and φ is Lipschitz continuous (φ
is constructed from a copula C0). Further by Lemma 6.5, we have

∣∣A2n − Ān
∣∣ ≤ 1

n

n∑
i=1

∣∣Λ(−φ(F̄n(X̄i)))− Λ(−φ(F̄ (X̄i)))
∣∣

≤ sup
x∈Rd

∣∣φ(F̄n(x))− φ(F̄ (x))
∣∣ = O

(√
ln lnn

n

)
a.s.

Assertion a) is now a consequence of (25), (26) and (28).
b) Since K is Lipschitz and functions φ̄1, . . . , φ̄d are Hölder-continuous with expo-
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nent α ∈ (0, 1], we derive

A2n − Ān =
1

n

n∑
i=1

(
Λ(−φ(F̄n(X̄i)))− Λ(−φ(F̄ (X̄i)))

)
=

1

n

n∑
i=1

 d∑
j=1

φ̄j(F̄ (X̄i))
(
Fjn(X

(j)
i )− Fj(X

(j)
i )
)+Rn

= Ăn +Rn, (29)

from (27) and by Lemma 6.5,

|Rn| ≤ C2 ·
1

n

n∑
i=1

∣∣∣Fjn(X(j)
i )− Fj(X

(j)
i )
∣∣∣1+α

= O
((
n−1 ln lnn

)(1+α)/2)
.

C2 > 0 is a constant. Part b) of the lemma is now a consequence of (25), (26), and
(29). ⊡

In the remaining part of this section we prove the result concerning a.s. convergence
rate and asymptotic normality. Here we have

ρ̂Rn − ρR =
A
(
B̂n −B

)
−B

(
Ân −A

)
AÂn

. (30)

Proof of Theorem 4.2: Define

B̄n =
1

n

n∑
i=1

φ(F̄ (X̄i)) (1− 2G(Yi)) .

An application of the law of iterated logarithm leads to

B̄n −B = O

(√
ln lnn

n

)
a.s. (31)

Using Lemma 6.5, we conclude

∣∣∣B̂n − B̄n

∣∣∣ ≤ 1

n

n∑
i=1

(∣∣φ(F̄n(X̄i))− φ(F̄ (X̄i))
∣∣ (1− 2Gn(Yi))

+2φ(F̄ (X̄i)) |Gn(Yi)−G(Yi)|
)

= O

(√
ln lnn

n

)
a.s.

which proves the Theorem in view of Lemma 6.7a), (30) and (31).
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Proof of Theorem 4.3: By (30) and Lemma 6.7b), we have

√
n
(
B̂nA−BÂn

)
=

√
n
(
A (B1n +B2n)−B

(
Ān + Ăn

))
+ o(n−1/2) a.s., (32)

where

B1n =
2

n

n∑
i=1

(
φ(F̄n(X̄i))− φ(F̄ (X̄i))

)
(G(Yi)−Gn(Yi)) ,

B2n =
1

n

n∑
i=1

((
φ(F̄n(X̄i))− φ(F̄ (X̄i))

)
(1− 2G(Yi))

+ φ(F̄ (X̄i)) (1− 2Gn(Yi))−B

)
.

Applying Lemma 6.5, we obtain

|B1n| ≤ 2 sup
x∈Rd

∣∣φ(F̄n(x))− φ(F̄ (x))
∣∣ sup

y∈R
|Gn(y)−G(y)|

= O

(
ln lnn

n

)
= o(n−1/2) a.s. (33)

Let φj(u) :=
∂
∂uj

φ(u). By assumption, functions φj are Hölder-continuous. Moreover,

by Taylor expansion, we have

B2n =
1

n

n∑
i=1

(
d∑
l=1

φl(F̄ (X̄i))
(
Fln(X

(l)
i )− Fl(X

(l)
i )
)
(1− 2G(Yi))

+ φ(F̄ (X̄i)) (1− 2Gn(Yi))−B

)
+Rn

=
1

n2

n∑
i=1

n∑
j=1

Λ1((X̄i, Yi), (X̄j , Yj)) +Rn,

where

Λ1((x, y), (x̄, ȳ)) =

d∑
l=1

φl(F̄ (x)) (1 {x̄l ≤ xl} − Fl(xl)) (1− 2G(y))

+φ(F̄ (x)) (1− 2 · 1 {ȳ ≤ y})−B

for x, x̄ ∈ Rd, y, ȳ ∈ R,

|Rn| ≤ O(
1

n
)

n∑
i=1

d∑
l=1

∣∣∣Fjn(X(j)
i )− Fj(X

(j)
i )
∣∣∣(1+α)/2

= O

((
ln lnn

n

)(1+α)/2
)

= o(n−1/2).
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Here α ∈ (0, 1] is the Hölder exponent. Further

Ān + Ăn =
1

n2

n∑
i=1

n∑
j=1

Λ2((X̄i, Yi), (X̄j , Yj)),

where

Λ2((x, y), (x̄, ȳ)) = Λ(−φ(F̄ (x))−
∫ 1

−1
Λ(z)dK(z)+

d∑
l=1

φ̄l(F̄ (x)) (1 {x̄l ≤ xl} − Fl(xl)) .

Now we are in a position to show asymptotic normality of ρ̂Rn. In view of (30), (32)
and (33), we have

√
n (ρ̂Rn − ρR) = A−1A−1

n B∗
n + oP(1), where

B∗
n = n−3/2

n∑
i=1

n∑
j=1

(
AΛ1((X̄i, Yi), (X̄j , Yj))−BΛ2((X̄i, Yi), (X̄j , Yj))

)
.

Let Λ0 = AΛ1 −BΛ2. Further

B∗
n = n−3/2

n∑
i=1

n∑
j=i+1

(
Λ0((X̄i, Yi), (X̄j , Yj)) + Λ0((X̄j , Yj), (X̄i, Yi))

)
+ oP(1).

We deduce

EΛ0((X1, Y1), (x̄, ȳ))

= −B
∫
Rd

d∑
j=1

φ̄j(F̄ (x)) (1 {x̄j ≤ xj} − Fj(xj)) dF (x)

+A

∫
Rd+1

d∑
j=1

φj(F̄ (x)) (1 {x̄j ≤ xj} − Fj(xj)) (1− 2G(y)) dH(x, y)

+2

∫
Rd+1

φ(F̄ (x)) (G(y)− 1 {ȳ ≤ y}) dH(x, y)

)
,

EΛ0((x, y), (X1, Y1)) = −B
(
Λ(−φ(F̄ (x)))−

∫ 1

−1
Λ(z)dK(z)

)
+A

(
φ(F̄ (x)) (1− 2G(y))−B

)
.

Now we apply the central limit theorem for U -statistics (see Theorem 5.5.1A in Serfling
(1980)) to obtain the theorem. ⊡
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